If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-20t-12=0
a = 5; b = -20; c = -12;
Δ = b2-4ac
Δ = -202-4·5·(-12)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-8\sqrt{10}}{2*5}=\frac{20-8\sqrt{10}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+8\sqrt{10}}{2*5}=\frac{20+8\sqrt{10}}{10} $
| 15=3x-16 | | 6x-15+5x+10+x+15=360 | | 7m-9=-9-9m-m | | -25+3x+13=0 | | 4x/9+16/3=0 | | Y=(-5/2x)+105 | | Y=(45/2x)-45 | | 13x=303 | | 2/3(9k+6)=34 | | -12p=132 | | -5(x-1)=3x+11 | | 23(9k+6)=34 | | 6a+8-4a-2=16 | | 3s+1+40+109=180 | | 2(3x-5)=2x+4 | | -10n=-150 | | -10n=150 | | x-6=x+4=x=x+5=x+2=72 | | 7e=3e | | 6x•2=-118 | | 4-6x=2(x-8)+2x | | 32n=-96 | | 2x+1/x-2+4=-8/2x-2x | | 8x+5=10-2x | | 3y-6=2y-12 | | 2b+4=3b+21 | | 1-a=0.80 | | -1/4a-4=7/4a=3 | | 3a-6=2a+8 | | 2y-12=3y+6 | | 5x+4=7x+33 | | 2x-10=3x-9 |